
 Copyright © 2005,
Tools Made Tough

1

Embedded
 Linux Software

Development

T.Michael Turney
Open Source
Ambassador

1.December.2005

 Copyright © 2005,
Tools Made Tough

2

S . O . A . P . B . O . X .

e

U R N O A N C

P A D M B R

E L P B E

R O L M

I U I E

O S N N

R G T

 S

 Copyright © 2005,
Tools Made Tough

3

The Embedded Linux Port Process
1. When it all goes right, what you can expect
2. 10,000 foot view zeroes in on each step

• Step 1 : Squaring away your environment
• Step 2 : Command & Control of your target
• Step 3 : Understanding the boot process

1. Grossly imPolite Litigation
2. Resources and Closing Thoughts

 Copyright © 2005,
Tools Made Tough

4

Typical Embedded Linux Diagram

 Copyright © 2005,
Tools Made Tough

5

The Perfect World
• Development Host is setup

– minicom is configured and working
– tftp is configured and working
– NFS server is configured and working
– DHCPD is configured and working
– Cross-Development tools are installed
– Root filesystem for target is installed
– Kernel for target is built

 Copyright © 2005,
Tools Made Tough

6

The Perfect World
• Target has boot firmware that…

– Can initialize target hardware
– Can do network boot of kernel
– Can pass board parameters to kernel
– Has serial port support and command

interpreter
– U-boot comes to mind

• http://sourceforge.net/projects/u-boot

 Copyright © 2005,
Tools Made Tough

7

The Perfect World
• Development host boots and starts all

necessary services
• Target boots to firmware prompt
• Target downloads kernel through network
• Kernel starts booting
• Kernel requests NFS-mount root filesystem
• Target displays login prompt on serial

console and responds to telnet

 Copyright © 2005,
Tools Made Tough

8

10,000 Feet Doesn’t Help With Details

• The devil is in the details, so lets grab the
two-horned beast by the tail and take a ride

 Copyright © 2005,
Tools Made Tough

9

Step 1 : Squaring Away Your
Environment

 Copyright © 2005,
Tools Made Tough

10

minicom Setup
• Make sure package is installed

– FedoraCore2 : minicom-2.00.0-18.1
• As root user, run

– minicom –s
• Things to specify include

– Port (e.g. /dev/ttyS0)
– Baud rate (should agree with firmware)
– Clear out some of the modem init strings
– Turn off Hardware flow control

• chmod 666 /dev/ttyS0

 Copyright © 2005,
Tools Made Tough

11

tftp Setup
• Make sure package is installed

– FedoraCore2 : tftp-server-0.33.3
• Create /tftpboot directory and open it up

– chmod 777 /tftpboot
• Create / modify configuration file

– /etc/xinetd.d/tftp
• Restart xinetd daemon

– /etc/init.d/xinetd restart

 Copyright © 2005,
Tools Made Tough

12

NFS Server Setup
• Make sure package is installed, FC2

– system-config-nfs-1.2.3-2, nfs-utils-1.0.6-20
• Create /etc/exports file
• Start NFS server

– /etc/init.d/nfs start
• Should NFS server start at boot-time?

– chkconfig nfs on

 Copyright © 2005,
Tools Made Tough

13

DHCPD Setup
• Make sure package is installed

– FedoraCore2 : dhcp-3.0.1-rcl2-4
• Create /etc/dhcpd.conf file
• Start DHCPD

– /etc/init.d/dhcpd start
• Should DHCPD start at boot-time?

– chkconfig dhcpd on

 Copyright © 2005,
Tools Made Tough

14

Cross-Development Toolchain

• You have three choices here:
– Purchase a distribution
– Download a distribution from the internet
– Roll your own

 Copyright © 2005,
Tools Made Tough

15

Purchase Toolchain
• Pros

– Benefits of a commercial product
• Support
• Quality (more testing than other options)

– Many companies testing the Linux waters want
the safety-net of a vendor-provided solution

• Cons
– $$$
– Beware of vendor-specific extensions

 Copyright © 2005,
Tools Made Tough

16

Download Toolchain

• Some architectures are better supported than others
• No safety-net of a vendor-provided solution
• caveat emptor (no money, but same principle)
• Easy way to jumpstart a skunk-works project
• May not scale as well as a commercial product
• The entity that provides the toolchain is making

money somehow, their responsiveness to your input
and queries may not be satisfactory

 Copyright © 2005,
Tools Made Tough

17

Build Toolchain
• Not for the faint-of-heart
• Know what you are doing
• At a minimum you will be building…

– gcc-4.0.2.tar.bz2
– gdb-6.3.tar.gz
– glibc-2.3.6.tar.gz
– Binutils-2.14.tar.gz

• You will become intimate with this site
– http://kegel.com/crosstool/

 Copyright © 2005,
Tools Made Tough

18

Root Filesystem for Target
• Same comments as the toolchain

• Most distributions start with debian
packages
– http://www.debian.org/distrib/packages

• You will become intimate with busybox
– http://www.busybox.net

 Copyright © 2005,
Tools Made Tough

19

Kernel for Target
• Same comments as the toolchain

• All distributions start from kernel.org
– http://www.kernel.org/

• The equivalent of a BSP is required, the
Linux kernel must be personalized for each
target board that it runs on
– (more on this later)

 Copyright © 2005,
Tools Made Tough

20

Step 2 : Command & Control of
Your Target

 Copyright © 2005,
Tools Made Tough

21

Firmware - 101
• POST (Power On Self Test)
• Initialize board hardware, e.g.

– SDRAM controller
– Interface ports (serial, network)

• Boot system

• This gives you the basics, but a good
development environment provides more…

 Copyright © 2005,
Tools Made Tough

22

Firmware - Advanced
• Provides a command interpreter
• Supports network boot of kernel
• Supports FW variables
• Supports scripting capability

• This gives you a nice development
environment for an embedded Linux project

 Copyright © 2005,
Tools Made Tough

23

Step 3 : Understanding the Boot
Process

 Copyright © 2005,
Tools Made Tough

24

Firmware Brings up Hardware
• The BIOS or Firmware must…

– Initialize SDRAM controller
– Initialize other hardware, e.g.,

• Timer channel
• Serial channel
• Network interface

• Development version should provide
rudimentary commands to the engineer

 Copyright © 2005,
Tools Made Tough

25

Firmware hands-off to the Linux
Loader

1. FW loads Linux kernel
• From Flash
• From network
• From other device

1. FW jumps to Linux Loader entry point

 Copyright © 2005,
Tools Made Tough

26

Time-Out!!!

We need some OSS tools…
http://cscope.sourceforge.net/
http://cbrowser.sourceforge.net/

 Copyright © 2005,
Tools Made Tough

27

Linux Loader Prepares the
Kernel for Boot

…/arch/ppc/boot/mbx/head.S (start)
• Calls start_ldr

• embed_config (initialize board info struct)
• typedef struct bd_info {

• unsigned int bi_memstart;
• unsigned int bi_memsize;
• unsigned int bi_intfreq;
• unsigned int bi_busfreq;
• unsigned char bi_enetaddr[6];
• unsigned int bi_baudrate;

• } bd_t;

 Copyright © 2005,
Tools Made Tough

28

Linux Loader cont…
• serial_init (initialize serial port)
• decompress_kernel

• Does the heavy lifting
• Determine size of vmlinuz kernel
• Determine size (presence) of initrd
• Print load data on serial console
• Display command line
• Allow user to modify command line
• Relocate and decompress kernel

Setup registers for kernel
Jump to kernel entry point (0x00)

 Copyright © 2005,
Tools Made Tough

29

Linux Kernel Boots
…/arch/ppc/kernel/head_8xx.S (_start)

– R3 : pointer to board info struct
– R4 : pointer to start of initrd
– R5 : pointer to end of initrd
– R6 : pointer to start of command line
– R7 : pointer to end of command line
– Map first 8M of ram as single page
– Map internal I/O space as single page
– Jump to start_here

 Copyright © 2005,
Tools Made Tough

30

Linux Kernel continues to boot…
• …/arch/ppc/kernel/head_8xx.S (start_here)

– Call identify_machine (…/arch/ppc/kernel/setup.c)
• Call m8xx_init

– Initialize struct machdep_calls ppc_md
– Initialize struct ide_machdep_calls ppc_ide_md

– Call MMU_init (…/arch/ppc/mm/init.c)
• Setup kernel memory mappings
• Setup I/O memory mappings

– Enable MMU
– Jump to start_kernel

 Copyright © 2005,
Tools Made Tough

31

Linux Kernel hands-off to the Init Process
• …/init/main.c (start_kernel)

– Initializes all kernel sub-systems
– kernel_thread(init, NULL, CLONE_FS |

CLONE_FILES | CLONE_SIGNAL);
• …/init/main.c (init)

– In this order…
• Command line
• /sbin/init
• /etc/init
• /bin/init
• /bin/sh

 Copyright © 2005,
Tools Made Tough

32

Grossly imPolite Litigation
• Any engineer working on a project using

OSS (open source software) has to be aware
of the GNU GPL.

• The General Public License is the main
license used by most OSS.

• http://www.opensource.org/
– Defines OSS
– Lists approved OSS licenses

 Copyright © 2005,
Tools Made Tough

33

• Q8: If I embed GNU/Linux in an application, what are my obligations to
the Open Source community?

A: The GNU General Public License (GPL version 2) is very specific about the
obligations imposed
on developers leveraging Open Source. If you deploy/redistribute program
binaries derived
from source code licensed under the GPL, you must

 Supply the source code to derived GPL code or Make an offer (good for 3 years)
to supply the source code

Retain all licensing / header information, copyright notices, etc. in those
sources

Redistribute the text of the GPL with the binaries and/or source code

Note that your obligation is strictly to the recipients of binaries (e.g.: your
customers). As long as you supply source code together with your GPL
binaries, you have no responsibility to the "community" at large. Moreover, the
source code for those portions of your application that are unique, not derived
from GPL code, are not at all affected by the GPL -- you may license them as
you choose.

 Copyright © 2005,
Tools Made Tough

34

T.Mike’s 3-Step Program

• Do you distribute or sell…
– A Service
– Hardware
– Software

 Copyright © 2005,
Tools Made Tough

35

Step 1 : Service
• The best position, vis-à-vis GPL
• Your use of GPL software is probably

locked away in a server room
• In essence, you aren’t distributing product

with GPL, so your GPL issues are kept
internal.

• Very similar to using GCC as your
toolchain

 Copyright © 2005,
Tools Made Tough

36

Step 2 : Hardware
• The second best position, vis-à-vis GPL
• Your use of GPL is hidden within a

hardware device
• Unless you are a chip vendor, changes you

make to the kernel probably don’t include
intellectual property important to your
company

• There is always a spoiler…
– http://www.gpl-violations.org/

 Copyright © 2005,
Tools Made Tough

37

http://www.gpl-violations.org/

• Products listed here include…
– TomTom
– Numerous notebooks

• Why gpl-violations.org?
• The project was started to raise the awareness about past

and present violations of the GNU General Public License.
Its main purpose is therefore gathering, maintaining and
distributing information about people who use and
distribute GPL licensed free software without adhering to
the license terms.

 Copyright © 2005,
Tools Made Tough

38

Step 3 : Software
• The worst position, vis-à-vis GPL
• Think long and hard about how a business

model to package/distribute OSS is going to
make money

• In order to survive, you have to have value-
add , and if you do have value-add, how are
you protecting it?

 Copyright © 2005,
Tools Made Tough

39

Resources
• Web Resources

– Repositories of OSS
• http://directory.fsf.org/
• http://sourceforge.net/
• http://freshmeat.net/

– Too many others to list…
– Can’t go wrong with google to start with…

 Copyright © 2005,
Tools Made Tough

40

Resources
• Book Resources

– Understanding the Linux Kernel (3rd Edition)
• Copyright November 2005
• ISBN 0-596-00565-2

– Linux Device Drivers (3rd Edition)
• Copyright February 2005
• ISBN 0-596-00590-3

– Building Embedded Linux Systems (1st Edition)
• Copyright April 2003
• ISBN 0-596-00222-X

– Running Linux (5th Edition)
• Copyright December 2005
• ISBN 0-596-00760-4

 Copyright © 2005,
Tools Made Tough

41

Closing Thoughts
• Linux is here to stay
• Embedded Linux is icing on the cake
• Linux makes it easier to roll your own

– But does your company make $$ selling OS’s?
• It still comes down to the same simple

decision…
– Partner with a vendor who provides you the

best tools to get your project to product…

 Copyright © 2005,
Tools Made Tough

42

S . O . A . P . B . O . X .

e

o u u r u n c

m t r o i i

e s a p l t

 t l o t e

 a s m

 n i e

 d t n

 i i t

 n o

 g n

 s

	Embedded Linux Software Development
	PowerPoint Presentation
	The Embedded Linux Port Process
	Typical Embedded Linux Diagram
	The Perfect World
	Slide 6
	Slide 7
	10,000 Feet Doesn’t Help With Details
	Step 1 : Squaring Away Your Environment
	minicom Setup
	tftp Setup
	NFS Server Setup
	DHCPD Setup
	Cross-Development Toolchain
	Purchase Toolchain
	Download Toolchain
	Build Toolchain
	Root Filesystem for Target
	Kernel for Target
	Step 2 : Command & Control of Your Target
	Firmware - 101
	Firmware - Advanced
	Step 3 : Understanding the Boot Process
	Firmware Brings up Hardware
	Firmware hands-off to the Linux Loader
	Time-Out!!!
	Linux Loader Prepares the Kernel for Boot
	Linux Loader cont…
	Linux Kernel Boots
	Linux Kernel continues to boot…
	Linux Kernel hands-off to the Init Process
	Grossly imPolite Litigation
	Slide 33
	T.Mike’s 3-Step Program
	Step 1 : Service
	Step 2 : Hardware
	http://www.gpl-violations.org/
	Step 3 : Software
	Resources
	Slide 40
	Closing Thoughts
	Slide 42

